Pyrolytic Product Distribution Analysis on Co-Pyrolysis of Face Mask Waste and Lignocellulosic Waste



DOI: https://doi.org/10.25077/metal.7.2.%25p.2023

Author(s)

Rain Agri Mahendra (Universitas Muhammadiyah Riau)

Abstract


COVID-19 causes a large increase in medical and non-medical waste in the world, especially in developing countries. Improper waste management causes significant health problems and impacts on the environment. Pyrolysis is a process that utilizes thermal instability of organic components in waste to convert them into liquid (oil), solid (charcoal), gas and wax products that have potential as fuels. Co-pyrolysis of medical face masks as infectious medical waste with non-infectious medical waste such as food waste, garden waste and paper were investigated for energy valorization. Particles, temperature, nitrogen flow rate and waste characterization affected the resulting product. Pyrolysis was carried out at 400 °C with nitrogen (N2) flow rate of 0.5 L/min. Co-pyrolysis of face masks and food waste produced oil with the highest yield because food waste contains dominant amount of cellulose and hemicellulose promoting high oil yield. This pyrolysis method is considered a simple, clean, safe and effective technique to reduce the amount of waste during a global pandemic.

Keywords


Co-pyrolysis; Face Mask; Lignocellulose; Biofuel; Biochar

Full Text:

PDF

References


H. Lukas, C. Xu, Y. Yu, and W. Gao, “Emerging telemedicine tools for remote covid-19 diagnosis, monitoring, and management,” ACS Nano, vol. 14, no. 12, pp. 16180–16193, 2020, doi: 10.1021/acsnano.0c08494.

S. Trump et al., “Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19,” Nat. Biotechnol., vol. 39, no. 6, pp. 705–716, 2021, doi: 10.1038/s41587-020-00796-1.

World Health Organization (WHO), “Rational Use of Personal Protective Equipment for Coronavirus Disease 2019 (COVID-19) and Considerations During Severe Shortages,” Who, no. March, pp. 1–7, 2020, [Online]. Available: https://apps.who.int/iris/handle/10665/331695

detikNews, “Imbauan Jokowi Pakai Masker Lagi di Outdoor Usai 2 Bulan Pelonggaran,” 2022. https://news.detik.com/berita/d-6173264/imbauan-jokowi-pakai-masker-lagi-di-outdoor-usai-2-bulan-pelonggaran

C. Park, H. Choi, K. Y. Andrew Lin, E. E. Kwon, and J. Lee, “COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste,” Energy, vol. 230, p. 120876, 2021, doi: 10.1016/j.energy.2021.120876.

J. C. Prata, A. L. P. Silva, T. R. Walker, A. C. Duarte, and T. Rocha-Santos, “COVID-19 Pandemic Repercussions on the Use and Management of Plastics,” Environ. Sci. Technol., vol. 54, no. 13, pp. 7760–7765, 2020, doi: 10.1021/acs.est.0c02178.

CNNindonesia, “Limbah Medis Berbahaya Capai 20 Ribu Ton Selama Pandemi Covid,” 2021. https://www.cnnindonesia.com/nasional/20210824233340-20-684872/limbah-medis-berbahaya-capai-20-ribu-ton-selama-pandemi-covid

P. Morone, A. Koutinas, N. Gathergood, M. Arshadi, and A. Matharu, “Food waste: Challenges and opportunities for enhancing the emerging bio-economy,” Journal of Cleaner Production, vol. 221. Elsevier Ltd, pp. 10–16, 2019. doi: 10.1016/j.jclepro.2019.02.258.

V. Kumar, P. Pathak, and N. K. Bhardwaj, “Waste paper: An underutilized but promising source for nanocellulose mining,” Waste Management, vol. 102. Elsevier Ltd, pp. 281–303, 2020. doi: 10.1016/j.wasman.2019.10.041.

P. Pradhan, A. Arora, and S. M. Mahajani, “Pilot scale evaluation of fuel pellets production from garden waste biomass,” Energy Sustain. Dev., vol. 43, pp. 1–14, 2018, doi: 10.1016/j.esd.2017.11.005.

World Health Organization (WHO), “Health-care waste,” 2018, [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/health-care-waste

SIPSN, “CAPAIAN KINERJA PENGELOLAAN SAMPAH,” 2021. https://sipsn.menlhk.go.id/sipsn/

V. K. Gaur, P. Sharma, R. Sirohi, M. K. Awasthi, C. G. Dussap, and A. Pandey, “Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review,” J. Hazard. Mater., vol. 398, p. 123019, 2020, doi: 10.1016/j.jhazmat.2020.123019.

S. Dharmaraj et al., “Pyrolysis: An effective technique for degradation of COVID-19 medical wastes,” Chemosphere, vol. 275. Elsevier Ltd, p. 130092, 2021. doi: 10.1016/j.chemosphere.2021.130092.

N. Bhattacharjee and A. B. Biswas, “Pyrolysis of Alternanthera philoxeroides (alligator weed): Effect of pyrolysis parameter on product yield and characterization of liquid product and bio char,” J. Energy Inst., vol. 91, no. 4, pp. 605–618, 2018, doi: 10.1016/j.joei.2017.02.011.

L. Jiang et al., “Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS,” Fuel, vol. 222, no. February, pp. 11–20, 2018, doi: 10.1016/j.fuel.2018.02.143.

Y. Ding, O. A. Ezekoye, J. Zhang, C. Wang, and S. Lu, “The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass,” Fuel, vol. 232, no. May, pp. 147–153, 2018, doi: 10.1016/j.fuel.2018.05.140.

D. Zhang, L. Jiang, S. Lu, C. Y. Cao, and H. P. Zhang, “Particle size effects on thermal kinetics and pyrolysis mechanisms of energetic 5-amino-1h-tetrazole,” Fuel, vol. 217, no. July 2017, pp. 553–560, 2018, doi: 10.1016/j.fuel.2017.12.052.

A. T. Sipra, N. Gao, and H. Sarwar, “Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts,” Fuel Processing Technology, vol. 175, no. October 2017. pp. 131–147, 2018. doi: 10.1016/j.fuproc.2018.02.012.

J. Wang et al., “Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system,” Energy Convers. Manag., vol. 180, no. 2, pp. 60–71, 2019, doi: 10.1016/j.enconman.2018.10.056.

H. M. Kadlimatti, B. Raj Mohan, and M. B. Saidutta, “Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology,” Biomass and Bioenergy, vol. 123, no. June 2018, pp. 25–33, 2019, doi: 10.1016/j.biombioe.2019.01.014.

A. Gupta and S. Mahajani, “Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: Experiments and modeling,” Energy, vol. 208, p. 118427, 2020, doi: 10.1016/j.energy.2020.118427.

S. Ryu et al., “Acid-treated waste red mud as an efficient catalyst for catalytic fast copyrolysis of lignin and polyproylene and ozone-catalytic conversion of toluene,” Environ. Res., vol. 191, no. August, p. 110149, 2020, doi: 10.1016/j.envres.2020.110149.

S. Kim et al., “Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts,” vol. 21, pp. 3715–3743, 2019, doi: 10.1039/c9gc01210a.

Y. K. Park, J. M. Ha, S. Oh, and J. Lee, “Bio-oil upgrading through hydrogen transfer reactions in supercritical solvents,” Chemical Engineering Journal, vol. 404, no. August 2020. Elsevier, p. 126527, 2021. doi: 10.1016/j.cej.2020.126527.

E. E. Kwon, T. Lee, Y. S. Ok, D. C. W. Tsang, C. Park, and J. Lee, “Effects of calcium carbonate on pyrolysis of sewage sludge,” Energy, vol. 153, pp. 726–731, 2018, doi: 10.1016/j.energy.2018.04.100.

J. M. Jung, J. I. Oh, K. Baek, J. Lee, and E. E. Kwon, “Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst,” Energy Convers. Manag., vol. 165, no. March, pp. 628–633, 2018, doi: 10.1016/j.enconman.2018.03.096.

B. B. Uzoejinwa, X. He, S. Wang, A. El-Fatah Abomohra, Y. Hu, and Q. Wang, “Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide,” Energy Conversion and Management, vol. 163, no. March. Elsevier, pp. 468–492, 2018. doi: 10.1016/j.enconman.2018.02.004.

R. K. Mishra and K. Mohanty, “Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals,” Carbon Resour. Convers., vol. 3, no. June, pp. 145–155, 2020, doi: 10.1016/j.crcon.2020.11.001.

M. Syamsiro, A. N. Hadiyanto, and Z. Mufrodi, “Rancang Bangun Mesin Pencacah Plastik Sebagai Bahan Baku Mesin Pirolisis Skala Komunal,” J. Mek. dan Sist. Termal, vol. 1, no. 2, pp. 43–48, 2016.

A. V Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” Biomass and Bioenergy, vol. 38, pp. 68–94, 2012, doi: 10.1016/j.biombioe.2011.01.048.

M. Hu et al., “Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture,” Energy, vol. 90, pp. 857–863, 2015, doi: 10.1016/j.energy.2015.07.122.

W. A. W. Mahari et al., “Microwave co-pyrolysis for simultaneous disposal of environmentally hazardous hospital plastic waste, lignocellulosic, and triglyceride biowaste,” J. Hazard. Mater., vol. 423, p. 127096, 2022, doi: 10.1016/j.jhazmat.2021.127096.

S. Hasan, A. Aladin, T. Syarif, and M. Arman, “Pengaruh Penambahan Gas Nitrogen Terhadap Kualitas Charcoal Yang Diproduksi Secara Pirolisis Dari Limbah Biomassa Serbuk Gergaji Kayu Ulin (Euxideroxylon Zwageri),” J. Chem. Process Eng., vol. 5, pp. 2655–2967, 2020.

S. S. Lam, W. A. Wan Mahari, chin K. Cheng, R. Omar, cheng T. Chong, and H. A. Chase, “Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon,” Energy, vol. 115, pp. 791–799, 2016, doi: 10.1016/j.energy.2016.09.076.

S. Jung, S. Lee, X. Dou, and E. E. Kwon, “Valorization of disposable COVID-19 mask through the thermo-chemical process,” Chem. Eng. J., vol. 405, no. August 2020, p. 126658, 2021, doi: 10.1016/j.cej.2020.126658.

S. K. Karmee and C. S. K. Lin, “Valorisation of food waste to biofuel: current trends and technological challenges,” Theor. Chem. Acc., vol. 2, no. 1, pp. 4–7, 2014, doi: 10.1186/s40508-014-0022-1.

A. Gupta, S. K. Thengane, and S. Mahajani, “CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study,” Bioresour. Technol., vol. 263, pp. 180–191, 2018, doi: 10.1016/j.biortech.2018.04.097.

A. Zhu, Y. Qin, J. Wu, M. Ye, and Y. Y. Li, “Characterization of biogas production and microbial community in thermophilic anaerobic co-digestion of sewage sludge and paper waste,” Bioresour. Technol., vol. 337, no. May, p. 125371, 2021, doi: 10.1016/j.biortech.2021.125371.

L. Zihare and D. Blumberga, “Market opportunities for cellulose products from combined renewable resources,” Environ. Clim. Technol., vol. 19, no. 1, pp. 33–38, 2017, doi: 10.1515/rtuect-2017-0003.

J. Akhtar and N. saidina A. Amin, “A review on operating parameters for optimum liquid oil yield in biomass pyrolysis,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5101–5109, 2012, doi: 10.1016/j.rser.2012.05.033.

M. M. Hasan, M. G. Rasul, M. M. K. Khan, N. Ashwath, and M. I. Jahirul, “Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments,” Renewable and Sustainable Energy Reviews, vol. 145, no. September. Elsevier Ltd, p. 111073, 2021. doi: 10.1016/j.rser.2021.111073.

A. Tomczyk, Z. Sokołowska, and P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects,” Reviews in Environmental Science and Biotechnology, vol. 19, no. 1. Springer Netherlands, pp. 191–215, 2020. doi: 10.1007/s11157-020-09523-3.

K. Jindo, H. Mizumoto, Y. Sawada, M. A. Sanchez-Monedero, and T. Sonoki, “Physical and chemical characterization of biochars derived from different agricultural residues,” Biogeosciences, vol. 11, no. 23, pp. 6613–6621, 2014, doi: 10.5194/bg-11-6613-2014.

J. A. Ippolito et al., “Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review,” Biochar, vol. 2, no. 4. Springer Singapore, pp. 421–438, 2020. doi: 10.1007/s42773-020-00067-x.

Y. Li, B. Xing, Y. Ding, X. Han, and S. Wang, “A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass,” Bioresource Technology, vol. 312, no. May. Elsevier, p. 123614, 2020. doi: 10.1016/j.biortech.2020.123614.

P. Pariyar, K. Kumari, M. K. Jain, and P. S. Jadhao, “Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application,” Sci. Total Environ., vol. 713, p. 136433, 2020, doi: 10.1016/j.scitotenv.2019.136433.

E. Rodríguez, R. Palos, A. Gutiérrez, D. Trueba, J. M. Arandes, and J. Bilbao, “Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit,” Energy Convers. Manag., vol. 207, no. October 2019, p. 112554, 2020, doi: 10.1016/j.enconman.2020.112554.

W. N. R. W. Isahak, M. W. M. Hisham, M. A. Yarmo, and T. Y. H. Hin, “A review on bio-oil production from biomass by using pyrolysis method,” Renewable and Sustainable Energy Reviews, vol. 16, no. 8. Elsevier, pp. 5910–5923, 2012. doi: 10.1016/j.rser.2012.05.039.

B. Biswas, N. Pandey, Y. Bisht, R. Singh, J. Kumar, and T. Bhaskar, “Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk,” Bioresour. Technol., vol. 237, pp. 57–63, 2017, doi: 10.1016/j.biortech.2017.02.046.

X. Huang et al., “Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge,” J. Anal. Appl. Pyrolysis, vol. 110, no. 1, pp. 353–362, 2014, doi: 10.1016/j.jaap.2014.10.003.

S. Kim, Y. Lee, K. Y. Andrew Lin, E. Hong, E. E. Kwon, and J. Lee, “The valorization of food waste via pyrolysis,” Journal of Cleaner Production, vol. 259. Elsevier Ltd, p. 120816, 2020. doi: 10.1016/j.jclepro.2020.120816.

B. Grycová, I. Koutník, and A. Pryszcz, “Pyrolysis process for the treatment of food waste,” Bioresour. Technol., vol. 218, pp. 1203–1207, 2016, doi: 10.1016/j.biortech.2016.07.064.

T. A. Aragaw and B. A. Mekonnen, “Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: a waste-to-energy conversion via Pyrolysis,” Environ. Syst. Res., vol. 10, no. 1, 2021, doi: 10.1186/s40068-020-00217-x.

M. S. Qureshi et al., “Pyrolysis of plastic waste: Opportunities and challenges,” J. Anal. Appl. Pyrolysis, vol. 152, no. October 2019, 2020, doi: 10.1016/j.jaap.2020.104804.

Z. Luo, X. Zhu, J. Deng, K. Gong, and X. Zhu, “High-value utilization of mask and heavy fraction of bio-oil: From hazardous waste to biochar, bio-oil, and graphene films,” J. Hazard. Mater., vol. 420, no. May, p. 126570, 2021, doi: 10.1016/j.jhazmat.2021.126570.

B. Grycova, A. Pryszcz, P. Lestinsky, and K. Chamradova, “Influence of potassium hydroxide and method of carbonization treatment in garden and corn waste microwave pyrolysis,” Biomass and Bioenergy, vol. 118, no. July, pp. 40–45, 2018, doi: 10.1016/j.biombioe.2018.07.022.

H. Siddiqui, S. K. Thengane, S. Sharma, and S. M. Mahajani, “Revamping downdraft gasifier to minimize clinker formation for high-ash garden waste as feedstock,” Bioresour. Technol., vol. 266, no. June, pp. 220–231, 2018, doi: 10.1016/j.biortech.2018.06.086.

D. Zhong et al., “Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose , hemicellulose and lignin,” Renew. Sustain. Energy Rev., vol. 157, no. December 2021, p. 111989, 2022, doi: 10.1016/j.rser.2021.111989.

K. Cen, J. Zhang, Z. Ma, D. Chen, J. Zhou, and H. Ma, “Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aqueous phase bio-oil,” Bioresour. Technol., vol. 278, no. November 2018, pp. 26–33, 2019, doi: 10.1016/j.biortech.2019.01.048.


StatisticsArticle Metrics

This article has been read : 101 times
PDF file viewed/downloaded : 18 times

Copyright (c) 2023 Rain Agri Mahendra

 


View METAL's Stats

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.